МАТЕМАТИЧЕСКАЯ ЛОГИКА

теоретическая логика, символическая логика,- раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики.

Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе такого языка математич. доказательств выдвигалась в 17 в. Г. Лейбницем (G. Leibniz). Но только в сер. 19 в. появились первые научные работы по алгебраизации аристотелевод логики [Дж. Буль (G. Boole, 1847) и О. де Морган (A. de Morgan, 1858)]. После того как Г. Фреге (G. Frege, 1879) и Ч. Пирс (С. Peirce, 1885) ввели в язык алгебры логики предикаты, предметные переменные и кванторы, возникла реальная возможность применить этот язык к вопросам оснований математики.

С другой стороны, создание в 19 в. неевклидовой геометрии сильно поколебало уверенность математиков в абсолютной надежности геометрич. интуиции, на к-рой была основана евклидова геометрия. Сомнениям в надежности геометрич. интуиции способствовало также то, что в результате развития исчисления бесконечно малых математики натолкнулись на неожиданные примеры всюду непрерывных функций без производных. Появилась потребность отделить понятие действительного числа от неясного понятия "величины", к-рое было основано на геометрич. интуиции. Эта задача была решена разными путями в работах К. Вейерштрасса (К. Weierstrab, P. Дедекинда (R. Dedekind) и Г. Кантора (G. Cantor). Они показали возможность "арифметизации" анализа и теории функций, в результате чего в качестве фундамента всей классич. математики стала рассматриваться арифметика целых чисел. Затем была предпринята аксиоматизация арифметики [Р. Дедекинд (1888) и Дж. Пеано (G. Реаnо, 1891)]. При этом Дж. Пеано создал более удобную символику для логич. языка. Пвзже этот язык был усовершенствован в совместном труде Б. Рассела (В. Russell) и А. Уайтхеда (A. Whitehead) "Принципы математики" (1910), где была предпринята попытка сведения всей математики к логике.Но эта попытка не увенчалась успехом, т. к. оказалось невозможным вывести из чисто логич. аксиом существование бесконечных множеств. Хотя логистич. программа Фреге - Рассела в основаниях математики так и не достигла своей главной цели - сведения математики к логике, в их работах был создан богатый логич. аппарат, без к-рого оформление М. л. как полноценной математич. дисциплины было бы невозможно.

На рубеже 19-20 вв. были обнаружены антиномии, связанные с основными понятиями теории множеств. Наиболее сильное впечатление на современников произвела опубликованная в 1903 антиномия Рассела. Пусть Месть множество всех таких множеств, каждое из к-рых не является своим собственным элементом. Легко убедиться, что Мявляется своим элементом тогда и только тогда, когда Мне является своим элементом. Конечно, можно пытаться выйти из создавшегося противоречия, сделав заключение, что такого множества Мне бывает. Однако, если не может существовать множество, состоящее в точности из всех элементов, удовлетворяющих такому четко определенному условию, к-рое мы имеем в приведенном выше определении множества М, то где гарантия того, что в нашей повседневной работе мы не столкнемся с множествами, к-рые также не могут существовать? И каким, вообще, условиям должно удовлетворять определение множества для того, чтобы оно существовало? Ясно было одно: нужно как-то ограничить канторовскую теорию множеств .

Л. Брауэр (L. Brouwer, 1908) выступил против применения правил классич. логики к бесконечным множествам. В выдвинутой им интуиционистской программе предлагалось отказаться от рассмотрения абстракции актуальной бесконечности, т. е. бесконечных множеств как завершенных совокупностей! Допуская существование сколь угодно больших натуральных чисел, интуиционисты выступают против рассмотрения натурального ряда как завершенного множества. Они считают, что в математике всякое доказательство существования того или иного объекта должно быть конструктивным, т. е. должно сопровождаться построением этого объекта. Если предположение о том, что искомый объект не существует, приведено к противоречию, то это, по мнению интуиционистов, не может рассматриваться как доказательство существования. Особой критике со стороны интупционистов подвергся исключенного третьего закон. Ввиду того, что этот закон первоначально рассматривался применительно к конечным множествам и, учитывая, что многие свойства конечных множеств не выполняются для бесконечных множеств (напр., что всякая собственная часть меньше целого), интуиционисты считают неправомерным применение этого закона к бесконечным множествам. Так, напр., чтобы утверждать, что проблема Ферма имеет положительное решение или имеет отрицательное решение, интуиционист должен указать соответствующее решение этой проблемы. А пока проблема Ферма не решена, эта дизъюнкция считается неправомерной. Такое же требование предъявляется к пониманию всякой дизъюнкции. Это требование интуиционистов может создать затруднения и в случае рассмотрения задач, связанных с конечными множествами. Представим себе, что кто-то, закрыв глаза, достает шар из урны, в к-рой имеются три черных и три белых шара, и тут же бросает этот шар обратно. Если никто не видел этот шар, то мы не имеем возможности узнать, какого он был цвета. Однако вряд ли можно всерьез оспаривать достоверность утверждения, что этот шар был либо черного, либо белого цвета.

Интуиционисты построили свою математику, имеющую интересные своеобразные особенности. Но она оказалась более сложной и громоздкой, чем классич. математика. Положительный вклад интуиционистов в исследование вопросов оснований математики выразился в том, что они еще раз решительным образом подчеркнули различие между конструктивным и неконструктивным в математике, они провели тщательный анализ многих трудностей, с к-рыми столкнулась математика в своем развитии, и тем самым способствовали их преодолению.

Д. Гильберт (D. Hilbert, см. добавления VII-X в [9]) наметил другой путь преодоления трудностей, возникших в основаниях математики на рубеже 19-20 вв. Этот путь, основанный на применении аксиоматич. метода рассмотрения формальных моделей, содержательной математики и на исследовании вопросов непротиворечивости таких моделей надежными финитными средствами, получил в математике название финитизма Гильберта. Признавая ненадежность геометрич. интуиции, Д. Гильберт прежде всего предпринимает тщательный пересмотр евклидовой геометрии, освобождая ее от обращения к интуиции. Результатом такой переработки явились его "Основания геометрии" (1899).

Вопросы непротиворечивости различных теорий по существу рассматривались и до Д. Гильберта. Так, построенная Ф. Клейном (F. Klein, 1871) проективная модель неевклидовой геометрии Лобачевского сводит вопрос о непротиворечивости геометрии Лобачевского к непротиворечивости евклидовой геометрии. Непротиворечивость евклидовой геометрии аналогично можно свести к непротиворечивости анализа, т. е. теории действительных чисел. Однако не видно было, какими средствами можно строить модели анализа и арифметики для доказательства их непротиворечивости. Заслуга Д. Гильберта состоит в том, что он указал прямой путь для исследования этого вопроса. Непротиворечивость данной теории означает, что в ней не может быть получено противоречие, т. е. не может быть доказано нек-рое утверждение Аи его отрицание МАТЕМАТИЧЕСКАЯ ЛОГИКА фото №1 Д. Гильберт предложил представить рассматриваемую теорию в виде формальной аксиоматич. системы, в к-рой будут выводимы все те и только те утверждения, к-рые являются теоремами нашей теории. Тогда для доказательства непротиворечивости достаточно установить невыводимость в рассматриваемой теории нек-рых утверждений. Таким образом, математич. теория, непротиворечивость к-рой мы хотим доказать, становится предметом изучения нек-рой математич. науки, к-рую Д. Гильберт назвал метаматематикой, или теорией доказательств.

Д. Гильберт писал, что парадоксы теории множеств вызваны не законом исключенного третьего, а "скорее тем, что математики пользуются недопустимыми и бессмысленными образованиями понятий, к-рые в моей теории доказательств исключаются сами собой. ...Отнять у математиков закон исключенного третьего - это то же, что забрать у астрономов телескоп или запретить боксерам использовать кулаки" (см. [9] с. 383). Д. Гильберт предлагает различать "действительные" и "идеальные" предложения классич. математики. Первые имеют содержательный смысл, а вторые не обязаны иметь содержательный смысл. Предложения, соответствующие употреблению актуальной бесконечности, идеальны. Идеальные предложения присоединяются к действительным для того, чтобы простые правила логики были применимы и к рассуждениям о бесконечных множествах. Это существенно упрощает структуру всей теории подобно тому, как при рассмотрении проективной геометрии на плоскости добавляется бесконечно удаленная прямая, пересекающая любые две параллельные прямые в нек-рой точке.

Выдвинутая Д. Гильбертом программа обоснования математики и его энтузиазм вдохновили современников на интенсивную разработку аксиоматического метода. Именно с предпринятой в начале 20 в. Д. Гильбертом и его последователями разработкой теории доказательств на базе развитого в работах Г. Фреге, Дж. Пеано и Б. Рассела логич. языка следует связывать становление М. л. как самостоятельной математич. дисциплины.

Предмет и основные разделы математической логики, связь с другими областями математики. Предмет современной М. л. разнообразен. Прежде всего следует отметить исследование логич. и логико-математич. исчислений, из к-рых основным является классич. исчисление предикатов. Еще в 1930 К. Гёдель (К. Godel) доказал теорему о полноте исчисления предикатов, согласно к-рой множество всех чисто логич. утверждений математики совпадает с множеством всех выводимых в исчислении предикатов формул (см. Гёделя теорема о полноте). Эта теорема показала, что исчисление предикатов является той логич. системой, на базе к-рой можно формализовать математику. На базе исчисления предикатов строятся различные логико-математич. теории (см. Логико-математические исчисления), представляющие собой формализацию содержательных математич. теорий - арифметики, анализа, теории множеств, теории групп и др. Наряду с элементарными теориями рассматриваются также теории высших порядков, в к-рых допускаются также кванторы по предикатам, предикаты от предикатов и т. д. Традиционными вопросами, к-рые исследуются для тех или иных формальных логич. систем, являются исследования структуры выводов в этих системах, выводимость тех или иных формул, вопросы непротиворечивости и полноты рассматриваемых систем.

Доказанная в 1931 Гёделя теорема о неполноте арифметики поколебала оптимистич. надежды Д. Гильберта на полное решение вопросов оснований математики на указанном пути. Согласно этой теореме, если формальная система, содержащая арифметику, непротиворечива, то утверждение о ее непротиворечивости, выразимое в этой системе, не может быть доказано средствами, формализуемыми в ней. Это означает, что с вопросами оснований математики дело обстоит не так просто, как хотелось или казалось Д. Гильберту вначале. Но уже К. Гёдель заметил, что непротиворечивость арифметики можно доказывать, пользуясь достаточно надежными конструктивными средствами, хотя и выходящими за рамки средств, формализуемых в арифметике. Аналогичные доказательства непротиворечивости арифметики были получены Г. Генценом (G. Gentzen, 1936) и П. С. Новиковым (1943).

В результате анализа канторовской теории множеств и связанных с ней парадоксов были построены различные системы аксиоматической теории множеств, в к-рых принимается то или иное ограничение на образование множеств, чтобы исключить возникновение известных антиномий. В этих аксиоматич. системах могут быть развиты довольно обширные разделы математики. Вопрос о непротиворечивости достаточно богатых аксиоматич. систем теории множеств остается открытым. Из наиболее значительных результатов, полученных в аксиоматич. теории множеств, следует отметить результат К. Гёделя о непротиворечивости континуум-гипотезы и выбора аксиомы в системе Бернайса - Гёделя МАТЕМАТИЧЕСКАЯ ЛОГИКА фото №2 (1939) и результат П. Коэна (P. Cohen, 1963) о независимости этих аксиом от аксиом системы Цермело-Френкеля ZF. Отметим, что эти две системы аксиом МАТЕМАТИЧЕСКАЯ ЛОГИКА фото №3 и ZF равнонепротиворечивы. Для доказательства своих результатов К. Гёдель ввел важное понятие конструктивного множества (см. Конструктивное по Гёдeлю множество).и показал существование модели системы МАТЕМАТИЧЕСКАЯ ЛОГИКА фото №4 состоящей из таких множеств. Метод К. Гёделя был использован П. С. Новиковым для доказательства непротиворечивости нек-рых других утверждений дескриптивной теории множеств (1951). Для построения моделей теории множеств ZF, в к-рых выполняются отрицания континуум-гипотезы или аксиомы выбора, П. Коэн ввел так наз. вынуждения метод, к-рый впоследствии был усовершенствован и стал основным методом построения моделей теории множеств, удовлетворяющих тем или иным свойствам.

Одним из наиболее замечательных достижений М. л. явилась разработка понятия общерекурсивной функции и формулировка Чёрча тезиса, утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма. Из других эквивалентных уточнений понятия алгоритма наибольшее распространение получили понятия Тьюринга машины и нормального алгорифма Маркова. По существу вся математика связана с теми или иными алгоритмами. Но только после уточнения понятия алгоритма появилась возможность обнаружить существование неразрешимых алгоритмических проблем в математике. Неразрешимые алгоритмич. проблемы были обнаружены во многих разделах математики (алгебра, теория чисел, топология, теория вероятностей и др.), причем оказалось, что они могут быть связаны с очень распространенными и фундаментальными понятиями математики. Исследование алгоритмич. проблем в той или иной области математики, как правило, сопровождается проникновением идей и методов М. л. в эту область, что приводит к решению также и других проблем, уже не имеющих алгоритмич. характера.

Разработка точного понятия алгоритма дала возможность уточнить понятие эффективности и развивать на базе такого уточнения конструктивное направление в математике (см. Конструктивная математика), воплотившее в себе нек-рые черты интуиционистского направления, но существенно отличающееся от последнего. Были созданы основы конструктивного анализа, конструктивной топологии, конструктивной теории вероятностей и др.

В самой теории алгоритмов можно выделить исследования в области рекурсивной арифметики, куда входят различные классификации рекурсивных и рекурсивно-перечислимых множеств, степени неразрешимости рекурсивно-перечислимых множеств, исследования сложности записи алгоритмов и сложности алгоритмич. вычислений (по времени и по зоне, см. Алгоритма слож ность). Обширным развивающимся разделом теории алгоритмов является теория нумераций.

Как отмечалось выше, аксиоматич. метод оказал большое влияние на развитие многих разделов математики. Особенно значительным было проникновение этого метода в алгебру. Так, на стыке М. л. и алгебры возникла общая теория алгебраических систем, или моделей теория. Это направление было заложено в работах А. И. Мальцева, А. Тарского (A. Tarski) и их учеников. Здесь можно отметить исследования по элементарным теориям классов моделей, в частности вопросы разрешимости этих теорий, аксиоматизируемость классов моделей, изоморфизм моделей, вопросы категоричности и полноты классов моделей.

Важное место в теории моделей занимает исследование нестандартных моделей арифметики и анализа. Еще на заре развития дифференциального исчисления в работах Г. Лейбница (G. Leibniz) и И. Ньютона (I. Newton) бесконечно малые и бесконечно большие величины рассматривались как числа. Позже появилось понятие переменной величины, и математики отказались от употребления бесконечно малых чисел, модуль к-рых отличен от нуля и меньше любого положительного действительного числа, т. к. их употребление потребовало бы отказа от аксиомы Архимеда. И только через три столетия в результате развития методов М. л. удалось установить, что (нестандартный) анализ с бесконечно малыми и бесконечно большими числами непротиворечив относительно обычного (стандартного) анализа действительных чисел.

Не обошлась без влияния аксиоматич. метода и интуиционистская математика. Так, еще в 1930 А. Рейтинг (A. Heyting) ввел в рассмотрение формальные системы интуиционистской логики высказываний и предикатов (конструктивные исчисления высказываний и предикатов). Позже были введены формальные системы интуиционистского анализа (см., напр., [8]). Многие исследования по интуиционистской логике и математике имеют дело с формальными системами. Подвергались специальному изучению также так наз. промежуточные логики (или суперинтуиционистские), т. е. логики, лежащие между классической и интуиционистской логиками. Понятие реализуемости формул по Клини представляет одну из попыток интерпретировать понятие интуиционистской истинности с точки зрения классич. математики. Однако оказалось, что не всякая реализуемая формула исчисления высказываний выводима в интуиционистском (конструктивном) исчислении высказываний.

Подверглась формализации также и модальная логика. Однако, несмотря на наличие большого числа работ по формальным системам модальной логики и по их семантике (Крипке модели), можно сказать, что здесь происходит процесс накопления пока еще разрозненных фактов.

М. л. имеет большое прикладное значение; с каждым годом растет глубокое проникновение идей и методов М. л. в кибернетику, в вычислительную математику, в структурную лингвистику.

Лит.:[1] Гильберт Д., Б е р н а й с П., Основания математики. Логические исчисления и формализация арифметики, пер. с нем., М., 1979; [2] К л и н и С. К., Введение в метаматематику, пер. с англ., М., 1957; [3] Мендельсон Э., Введение в математическую логику, пер. сангл., 2 изд., М., 1976; [4] Новиков П. С., Элементы математической логики, 2 изд., М., 1973; [5] Е р ш о в Ю. Л., Палютин Е. А., Математическая логика, М., 1979; [6] Ш е н ф и л д Д. Р., Математическая логика, пер. с англ., М., 1975; [7] Н о в и к о в П. С., Конструктивная математическая логика с точки зрения классической, М., 1977; [8] К л и н и С. К., В е с л и Р., Основания интуиционистской математики с точки зрения теории рекурсивных функций, пер. с англ., М., 1978; [9] Гильберт Д., Основания геометрик, пер. с нем., М., 1948; [10] Френкель А.-А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966; [11] Математика XIX века. Математическая логика. Алгебра. Теория чисел. Теория вероятностей, М., 1978; [12] Mostowski A., Thirty years of foundational studies, Hels., 1965.

См. также лит. при статьях об отдельных разделах М. л.

С. И. Адян.



Синонимы:
логистика


Смотреть больше слов в «Математической энциклопедии»

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ →← МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА

Синонимы слова "МАТЕМАТИЧЕСКАЯ ЛОГИКА":

Смотреть что такое МАТЕМАТИЧЕСКАЯ ЛОГИКА в других словарях:

МАТЕМАТИЧЕСКАЯ ЛОГИКА

        логика, развиваемая математическим методом. Характерным для М. л. является использование формальных языков с точным синтаксисом и чёткой семант... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

математическая логика сущ., кол-во синонимов: 1 • логистика (9) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: логистика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА, логи ка, развиваемая математич. методом. Характерным для М. л. является использование формальных языков с точным синтаксисом ... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА — одно из названий современной логики, пришедшей во втор. пол. 19 — нач. 20 в. на смену традиционной логике. В качестве др. н... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

логика, развившаяся в точную науку, применяющую математич. методы, или, согласно П. С. Порецкому, логика по предмету, математика по методам. Идея построения М. л. высказывалась впервые Лейбницем. Но лишь в 19 в. в соч. Буля "Математический анализ логики" (G."Boole, "The mathematical analysis of logic", 1847) была начата систематич. разработка этой науки. Дальнейшее развитие М. л. в значит. мере стимулировалось потребностями математики, ставившей логич. проблемы, для решения к-рых старые средства классич. формальной логики были непригодны. Одной из этих проблем явилась проблема недоказуемости 5-го постулата Эвклида в геометрии. Эта проблема связана с аксиоматическим методом, являющимся наиболее распространенным способом логич. систематизации математики. Он требует точной формулировки основных, принимаемых без доказательства положений развертываемой теории – т.н. а к с и о м, из к-рых все дальнейшее ее содержание логически выводится. Математич. теории, развиваемые т.о., наз. а к с и о м а т и ч е с к и м и. Классич. прототипом такого построения математич. теории является эвклидово построение геометрии. В связи со всякой аксиоматич. теорией естественно возникает ряд логич. проблем. В частности, возникает проблема л о г и ч е с к о й н е з а в и с и м о с т и аксиом данной теории, состоящая в установлении того, что ни одна из аксиом теории не может быть чисто логически выведена из остальных аксиом. Для эвклидовой геометрии в течение двух тысячелетий оставался открытым вопрос о логич. независимости 5-го постулата Эвклида. Было предпринято много тщетных попыток вывести его из остальных аксиом эвклидовой геометрии, пока, наконец, в работах Н. И. Лобачевского не было впервые в явной форме высказано убеждение в невозможности осуществить такой вывод. Это убеждение было подкреплено Лобачевским построением новой геометрии, в корне отличной от эвклидовой. В геометрии Лобачевского, тщательно разработанной ее творцом, не обнаруживалось противоречий; это вселяло уверенность в том, что противоречия и вообще не могут возникнуть, как бы далеко ни было продвинуто выведение следствий из аксиом новой геометрии. Впоследствии нем. математиком Ф. Клейном было доказано, что п р о т и в о р е ч и я не могут возникнуть в геометрии Лобачевского, если они не могут возникнуть в эвклидовой г е о м е т р и и (см. Метод аксиоматический). Так возникли и были частично решены исторически первые проблемы "недоказуемости" и непротиворечивости в аксиоматич. теориях. Точная постановка таких проблем, их рассмотрение как проблем математических требуют уточнения понятия доказательства. Всякое математич. доказательство состоит в последовательном применении тех или иных логич. средств к исходным положениям. Но логич. средства не представляют собой чего-то абсолютного, раз навсегда установленного. Они вырабатывались многовековой человеческой практикой; "...практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, д а б ы эти фигуры м о г л и получить значение а к с и о м" (Ленин В. И., Соч., т. 38, с. 181–82). Человеческая практика является, однако, на каждом историч. этапе ограниченной, а объем ее все время растет. Логич. средства, удовлетворительно отражавшие человеческое мышление на данном этапе или в данной области, могут уже оказаться неподходящими на след. этапе или в др. области. Тогда в зависимости от изменения содержания рассматриваемого предмета изменяется и способ его рассмотрения – изменяются логич. средства. Это в особенности относится к математике с ее далеко идущими многостепенными абстракциями. Здесь бессмысленно говорить о логич. средствах как о чем-то данном в своей совокупности, как о чем-то абсолютном. Зато имеет смысл рассмотрение логич. средств, применяемых в той же или иной конкретной обстановке, встречающейся в математике. Их установление для к.-л. аксиоматич. теории и составляет искомое уточнение понятия доказательства для этой теории. Важность этого уточнения для развития математики выявилась в особенности за последнее время. Разрабатывая множеств теорию, ученые столкнулись с рядом трудных проблем, в частности с проблемой о мощности континуума, выдвинутой Г. Кантором (1883), к к-рой до 1939 не было найдено удовлетворит. подходов. Др. проблемы, столь же упорно не поддававшиеся решению, встретились в дескриптивной теории множеств, разрабатываемой сов. математиками. Постепенно выяснилось, что трудность этих проблем является логической, что она связана с неполной выявленностью применяемых логич. средств и аксиом и что единств. путем к ее преодолению является уточнение тех и других. Выяснилось, т.о., что разрешение этих задач требует привлечения М. л., к-рая, следовательно, является наукой, необходимой для развития математики. В наст. время надежды, возлагавшиеся на М. л. в связи с этими проблемами, уже оправдали себя. В отношении проблемы континуума очень существенный результат был получен К. Геделем (1939), доказавшим непротиворечивость обобщенной континуум-гипотезы Кантора с аксиомами теории множеств при условии, что эти последние непротиворечивы. В отношении же ряда трудных проблем дескриптивной теории множеств важные результаты получены П. С. Новиковым (1951). Уточнение понятий доказательства в аксиоматич. теории является важным этапом ее развития. Теории, прошедшие этот этап, т.е. аксиоматич. теории с установленными логич. средствами, называют д е д у к т и в н ы м и т е о р и я м и. Лишь для них допускают точную формулировку интересующие математиков проблемы доказуемости и непротиворечивости в аксиоматич. теориях. Для решения этих проблем в совр. М. л. применяется метод формализации доказательств. Идея метода формализации доказательств принадлежит нем. математику Д. Гильберту. Проведение этой идеи стало возможным благодаря предшествовавшей разработке М. л. Булем, Порецким, Шредером, Фреге, Пеано и др. В наст. время метод формализации доказательств является мощным орудием исследования в проблемах обоснования математики. Применение метода формализации бывает обычно связано с выделением логич. части рассматриваемой дедуктивной теории. Эта логич. часть, оформляемая, как и вся теория, в виде нек-рого исчисления, т.е. системы формализованных аксиом и формальных правил вывода, может быть рассматриваема как самостоятельное целое. Простейшим из логич. исчислений являются исчисления высказываний, классическое и конструктивное. Формальное различие двух исчислений высказываний отражает глубокое различие в их истолкованиях, касающееся смысла пропозициональных переменных и логич. связок (см. Интуиционизм, Исчисление задач, Логика высказываний). Наиболее широко используемым при построении дедуктивных математич. теорий является в наст. время классич. предикатов исчисление, представляющее собой развитие и уточнение классич. теории суждений Аристотеля и вместе с тем соответствующее теоретико-множеств. системе абстракций. Конструктивное исчисление предикатов относится к классич. исчислению предикатов так же, как конструктивное исчисление высказываний к классич. исчислению высказываний. Самое существенное из расхождений между этими двумя исчислениями предикатов связано с истолкованием в них частных, или экзистенциальных, суждений. В то время как в конструктивном исчислении предикатов такие суждения истолковываются как утверждения о возможности определ. конструкций и считаются установленными лишь при указании этих конструкций, в классич. исчислении предикатов экзистенциальные суждения обычно трактуются в отрыве от конструктивных возможностей как некие "чистые" утверждения о существовании (см. Конструктивное направление). Более удовлетворительное истолкование экзистен-циальных суждений классич. исчисления предикатов, увязывающее определ. образом это исчисление с конструктивным исчислением предикатов, было открыто А. Н. Колмогоровым в 1925. В математике логич. исчисления применяются в сочетании со специфич. аксиомами развертываемых дедуктивных теорий. Напр., теорию натуральных чисел можно строить, объединяя аксиомы Пеано для арифметики с исчислением предикатов (классическим или конструктивным). Применяемое при этом объединение логич. символики с математической не только позволяет оформлять математич. теории в виде исчислений, но и может являться ключом к уточнению смысла математич. предложений. В наст. время сов. математиком Н. А. Шаниным разработаны точные правила конструктивного истолкования математич. суждений, охватывающие широкие области математики. Применение этих правил становится возможным лишь после того, как рассматриваемое суждение записано на надлежащем точном логико-математич. языке. В результате применения правил истолкования может выявиться конструктивная задача, связываемая с данным суждением. Это, однако, происходит не всегда: не со всяким математич. предложением обязательно связывается конструктивная задача. С исчислениями связаны следующие понятия и идеи. Об исчислении говорят, что оно непротиворечиво, если в нем не выводима никакая формула вида U вместе с формулой U (где есть знак отрицания). Задача установления непротиворечивости применяемых в математике исчислений является одной из гл. задач М. л. В наст. время эта задача решена лишь в весьма огранич. объеме. Употребляются разл. понятия п о л н о т ы исчисления. Имея в виду охват той или иной содержательно определенной области математики, считают исчисление полным относительно этой области, если в нем выводима всякая формула, выражающая верное утверждение из этой области. Другое понятие полноты исчисления связано с требованием доставлять либо доказательство, либо опровержение для всякого предложения, формулируемого в исчислении. Первостепенное значение в связи с этими понятиями имеет теорема Геделя–Россера, утверждающая несовместимость требования полноты с требованиями непротиворечивости для весьма широкого класса исчислений. Согласно теореме Геделя–Россера, никакое непротиворечивое исчисление из этого класса не может быть полным относительно арифметики: для всякого такого исчисления может быть построено верное арифметич. утверждение, формализуемое, но не выводимое в этом исчислении (см. Метатеория). Эта теорема, не снижая значения М. л. как мощного организующего средства в науке, в корне убивает надежды на эту дисциплину как на нечто способное осуществить всеобщий охват математики в рамках одной дедуктивной теории. Надежды такого рода высказывались мн. учеными, в том числе Гильбертом – главным представителем формализма в математике – направления, пытавшегося свести всю математику к манипуляциям с формулами по определенным раз навсегда установленным правилам. Результат Геделя и Россера нанес этому направлению сокрушительный удар. В силу их теоремы, даже такая сравнительно элементарная часть математики, как арифметика натуральных чисел, не может быть охвачена одной дедуктивной теорией. М. л. органически связана с кибернетикой, в частности с теорией релейно-контактных схем и автоматов, машинной математикой и лингвистикой математической. Приложения М. л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно- контактная схема в след. смысле м о д е л и р у е т нек-рую формулу U классич. исчисления высказываний. Если схема управляется n реле, то столько же различных пропозициональных переменных содержит U, и, если обозначить через bi, суждение "Реле номер i сработало", то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений b1, ..., bn вместо соответствующих логич. переменных в U. Построение такой моделируемой формулы, описывающей "условия работы" схемы, оказывается особенно простым для т.н. ?-с х е м, получаемых исходя из элементарных одноконтактных цепей путем параллельных и последовательных соединений. Это связано с тем, что параллельное и последовательное соединения цепей моделируют, соответственно, дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путем параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь Ц1 или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам совр. техники. Вместе с тем эта связь теории с практикой привела к постановке и частичному решению мн. новых и трудных проблем М. л., к числу к-рых в первую очередь относится т.н. проблема м и н и м и з а ц и и, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле. Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в совр. автоматах. Управляющие схемы иных типов, в частности, схемы из электронных ламп или полупроводниковых элементов, имеющие еще большее практич. значение, также могут быть разрабатываемы с помощью М. л., к-рая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык М. л. оказался также применимым в теории программирования, создаваемой в наст. время в связи с развитием машинной математики. Наконец, созданный в М. л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математич. методами. Одной из осн. проблем этой науки является точная формулировка правил грамматики рассматриваемого языка, т.е. точное определение того, что следует понимать под "грамматически правильной фразой этого языка". Как показал амер. ученый Хомский, есть все основания искать решение этой задачи в следующем виде: строится нек-рое исчисление, и грамматически правильными фразами объявляются выражения, составленные из знаков алфавита данного языка и выводимые в этом исчислении. Работы в этом направлении продолжаются. См. также Алгебра логики, Конструктивная логика, Логика комбинаторная, Логика классов, Логическое исчисление, Модальная логика и лит. при этих статьях. А. Марков. Москва. ... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

        ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика — область логики, в которой логические выводы исследуются посредством логичес... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА Ее еще называют символической логикой. М. л. - это та же самая Аристотелева силлогистическая логика, но только гром... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19-20 ст. как реализация идеи о возможности записать ... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

область знания, к-рая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В М. л. логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в М. л. встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, к-рые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику — теорию средств описания, предпосылок и свойств логических исчислений. Нек-рые исходные понятия М. л. содержатся уже в учении мегаростоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина М. л. оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие т. наз. алгебры логики. Др. направление разработки М. л., ставшее определяющим, начинается с конца 19 в. в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел и Уайтхед (“Principia Mathematica”, 1910—13) и Гельберт. В этот период создаются фундаментальные логические системы М. л.— классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие совр. состояние М. л., были получены в. 30-х гг. Геделем. Тарским, А. Черчем. Совр. этап М. л. характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической М. л. разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. М. л. оказала влияние на развитие ряда разделов совр. математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. М. л. находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика). ... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА — одно из названий современной формальной логики, пришедшей во второй половине XIX — на­чале XX в. на смену традиционной логике. ... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

одно из названий современной формальной логики, пришедшей во второй половине XIX - начале XX в. на смену традиционной логике. В качестве другого назва... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

современная математическая модель формальной логики как науки о правильном рассуждении. По меткому выражению русского логика Порецкого, математическая логика суть логика по предмету и математика — по методу решения своих проблем. Систематическая разработка математической логики началась с работ Больцано, Фреге, Рассела и Витгенштейна. Суть этой логики и рассмотрении большинства логических категорий (понятие, предикат, суждение, умозаключение, вывод, доказательство) как логических функций, областью значения которых являются истинностные значения. Как логические функции истолковываются и все логические операторы (термины «Все», «Существует», «Некоторые», «Один», «Ниодин», «и», «или», «если, то», «тождественно», «возможно», «необходимо» и т. д. и т. п.). Все логические функции задаются, в конечном счете, табличным способом с помощью всевозможных сочетаний введенного числа истинностных значений на «входе» и «выходе» этих функций. Так, например, логическое отношение «если, то...» моделируется с помощью функции =), называемой материальной импликацией.... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики.... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

дедуктивная логика, включающая матем. методы иссл. способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. М. л. наз. т... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.<br><br><br>... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ логика - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.<br>... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА , дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

- дедуктивная логика, включающая математическиеметоды исследования способов рассуждений (выводов); математическая теориядедуктивных способов рассуждений. Математической логикой называют такжелогику, которой пользуются в математике.... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

mathematical logic, logic, logic theory* * *mathematical logicСинонимы: логистика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. <br>... смотреть

МАТЕМАТИЧЕСКАЯ ЛОГИКА

mathematical logicСинонимы: логистика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

mathematical logicСинонимы: логистика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

(исследование мышления с помощью исчислений и формализованных языков) mathematical logic

МАТЕМАТИЧЕСКАЯ ЛОГИКА

математи́чна ло́гіка Синонимы: логистика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

математикалық логика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

математикалық логика

МАТЕМАТИЧЕСКАЯ ЛОГИКА

матэматычная логіка

МАТЕМАТИЧЕСКАЯ ЛОГИКА

математична логіка

T: 158